Topology-generating interfacial pattern formation during liquid metal dealloying

نویسندگان

  • Pierre-Antoine Geslin
  • Ian McCue
  • Bernard Gaskey
  • Jonah Erlebacher
  • Alain Karma
چکیده

Liquid metal dealloying has emerged as a novel technique to produce topologically complex nanoporous and nanocomposite structures with ultra-high interfacial area and other unique properties relevant for diverse material applications. This process is empirically known to require the selective dissolution of one element of a multicomponent solid alloy into a liquid metal to obtain desirable structures. However, how structures form is not known. Here we demonstrate, using mesoscale phase-field modelling and experiments, that nano/microstructural pattern formation during dealloying results from the interplay of (i) interfacial spinodal decomposition, forming compositional domain structures enriched in the immiscible element, and (ii) diffusion-coupled growth of the enriched solid phase and the liquid phase into the alloy. We highlight how those two basic mechanisms interact to yield a rich variety of topologically disconnected and connected structures. Moreover, we deduce scaling laws governing microstructural length scales and dealloying kinetics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shape-transformable liquid metal nanoparticles in aqueous solution† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc00057j Click here for additional data file.

Stable suspensions of eutectic gallium indium (EGaIn) liquid metal nanoparticles form by probe-sonicating the metal in an aqueous solution. Positively-charged molecular or macromolecular surfactants in the solution, such as cetrimonium bromide or lysozyme, respectively, stabilize the suspension by interacting with the negative charges of the surface oxide that forms on the metal. The liquid met...

متن کامل

Investigation of pulsed laser induced dewetting in nanoscopic metal films

Hydrodynamic pattern formation (PF) and dewetting resulting from pulsed laser induced melting of nanoscopic metal films have been used to create spatially ordered metal nanoparticle arrays with monomodal size distribution on SiO 2 /Si substrates. PF was investigated for film thickness h ≤ 7 nm < laser absorption depth ∼ 11 nm and different sets of laser parameters, including energy density E an...

متن کامل

Evolution of dealloying induced strain in nanoporous gold crystals.

We studied the evolution of dealloying-induced strain along the {111} in a Ag-Au nano-crystal in situ, during formation of nanoporous gold at the initial stage of dealloying using Bragg coherent X-ray diffractive imaging. The strain magnitude with maximum probability in the crystal doubled in 10 s of dealloying. Although formation of nano-pores just began at the surface, the greatest strain is ...

متن کامل

Formation of substrate-based gold nanocage chains through dealloying with nitric acid

Metal nanocages have raised great interest because of their new properties and wide applications. Here, we report on the use of galvanic replacement reactions to synthesize substrate-supported Ag-Au nanocages from silver templates electrodeposited on transparent indium tin oxide (ITO) film coated glass. The residual Ag in the composition was dealloyed with 10% nitric acid. It was found that cha...

متن کامل

INVITED PAPERS 3D morphological evolution of porous titanium by x-ray micro- and nano-tomography

The 3D morphological evolution of titanium foams as they undergo a two-step fabrication process is quantitatively characterized through x-ray microand nano-tomography. In the first process step, a Cu–Ti–Cr–Zr prealloy is immersed in liquid Mg, where Cu is alloyed with Mg while a skeleton of crystalline Ti–Cr–Zr is created. In the second step, the Mg–Cu phase is etched in acid, leaving a Ti–Cr–Z...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015